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Abstract: Leishmania spp. are important pathogens causing a vector-borne disease with a broad range
of clinical manifestations from self-healing ulcers to the life-threatening visceral forms. Presence
of Leishmania RNA virus (LRV) confers survival advantage to these parasites by suppressing anti-
leishmanial immunity in the vertebrate host. The two viral species, LRV1 and LRV2 infect species
of the subgenera Viannia and Leishmania, respectively. In this work we investigated co-phylogenetic
patterns of leishmaniae and their viruses on a small scale (LRV2 in L. major) and demonstrated their
predominant coevolution, occasionally broken by intraspecific host switches. Our analysis of the two
viral genes, encoding the capsid and RNA-dependent RNA polymerase (RDRP), revealed them to
be under the pressure of purifying selection, which was considerably stronger for the former gene
across the whole tree. The selective pressure also differs between the LRV clades and correlates with
the frequency of interspecific host switches. In addition, using experimental (capsid) and predicted
(RDRP) models we demonstrated that the evolutionary variability across the structure is strikingly
different in these two viral proteins.

Keywords: Leishmaniavirus; coevolution; phylogenomics

1. Introduction

The parasitic flagellates of the genus Leishmania (Trypanosomatidae) are causative
agents of leishmaniasis, a vector-borne disease with a broad range of clinical manifestations
from self-healing ulcers to the life-threatening visceral form [1,2]. These protists have been
documented to bear negative-sense single-stranded RNA viruses of the family Leishbun-
yaviridae and double-stranded RNA (dsRNA) viruses of the family Totiviridae [3,4]. The
first group appears to be specific to Trypanosomatidae and its members have been found
in various lineages of these flagellates [5]. In Leishmania, the only known representative
of bunyaviruses is Leishmania martiniquensis leishbunyavirus 1 (LmarLBV1), inhabiting the
corresponding species of the subgenus Mundinia and marginally increasing the infectivity
of the flagellate host in vitro [4]. Totiviridae are generally known as myco-viruses since
most members infect fungi [6]. Other known hosts are animals [7–10] and protists [11–14].
Leishmania RNA virus (LRV) was first described from Leishmania spp. [15,16]. The two
species, LRV1 and LRV2 have been documented as infecting members of the subgenera
Viannia (L. braziliensis, L. guyanensis, L. lainsoni, L. naiffi, L. panamensis, and L. shawi) and
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Leishmania (L. aethiopica, L. infantum, L. major, L. tropica), respectively [17]. Recently, two
additional species, LRV3 and LRV4, were discovered in the flea-infecting trypanosomatids
of the genus Blechomonas [18]. LRVs confer survival advantage to Leishmania by suppress-
ing anti-leishmanial immunity in the vertebrate host [19,20]. It has been experimentally
demonstrated that dsRNA of LRV1 interacts with TLR3 endosomal receptor, thereby pro-
moting chronic inflammation and mediating the spread of L. guyanensis to secondary sites,
ultimately causing persistent “metastatic” infection [21–23]. Similarly, presence of LRV2 in
L. aethiopica causes elevated levels of pro-inflammatory cytokines in murine macrophages
in vitro [24]. It has been demonstrated that activation of TLR3 by viral dsRNA also leads
to phosphorylation of a protein kinase B (Akt) facilitating survival and proliferation of
infected macrophages [25]. It is generally assumed that these mechanisms are responsible
for mutualistic co-evolution of Leishmania and LRV [26].

Despite the advantage provided by LRVs to Leishmania, they are not present in all
species or isolates of a given species, suggesting more complex relationships between the
two partners of this symbiosis [27]. Moreover, it appears that the presence of viruses in
some Leishmania spp., for example LRV2 in L. tropica and L. infantum, can be explained by the
relatively recent horizontal transfers [28,29]. This agrees with the experimental data on the
possibility of LRV transmission via exosomes, which are shed by the infected leishmaniae
and, subsequently, uptaken by uninfected ones through the flagellar pocket [30].

In this work we attempted to shed light on the evolution of LRVs by investigating
co-phylogenetic patterns of leishmaniae and their viruses on a small scale, as well as
scrutinizing the evolutionary variability of the two viral proteins, the capsid and reverse
RNA-dependent RNA polymerase (RDRP).

2. Materials and Methods
2.1. Leishmania spp. Strains, Cultivation, and Screening for dsRNA Viruses

Promastigotes of 21 Leishmania spp. isolates (Table 1) were cultivated as described pre-
viously [31]. Total genomic DNA was isolated from 10 mL of the log-phase cultures using
DNeasy Blood & Tissue Kit (Qiagen, Hilden, Germany) according to the manufacturer’s
instructions. Small subunit rRNA gene was amplified using primers S762 and S763, fol-
lowing the previously described protocol [32] and sequenced directly at Macrogen Europe
(Amsterdam, The Netherlands) with a set of internal primers as reported elsewhere [33].
The species identity of the strains was confirmed by BLAST. Double-stranded RNA frac-
tions were isolated and analyzed as described previously [5]. The presence of LRVs in the
strains MHOM/UZ/1998/IsvM01h and MHOM/UZ/1998/IsvM27h (Table 1) and viral
sequences have been reported earlier [34]. In this work we sequenced the genomes of these
two Leishmania isolates.

For the comparison of LRV2 prevalence, 95% confidence interval (CI) was calculated
by “exact” binomial method (Clopper–Pearson interval), and the statistical significance of
the difference in the observed proportions has been estimated using the chi-square test.
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Table 1. Strains of Leishmania spp. investigated in this work.

Species Code WHO Code Source Origin

Negative

L. turanica

87568 MRHO/UZ/1987/KD87568

great gerbil 1

Uzbekistan, Qashqadaryo reg
9554 MRHO/TM/1995/9554

Turkmenistan, Ak bugdaý, Ahal reg.9562 MRHO/TM/1995/9562
9558 MRHO/TM/1995/9558

KP137 MHOM/TM/1986/KP137 Turkmenistan, Serdar, Balkan reg.
91014 MHOM/TM/1991/91014 Turkmenistan, Tjazeel, Ahal reg.
73 P MHOM/UZ/2002/IsvM73g Uzbekistan, Muborak, Qashqadaryo reg.
9105 MRHO/TM/1991/9105 Turkmenistan, Tjazeel, Ahal reg.

L. major

13Th MHOM/UZ/2003/IsvT13h
human Uzbekistan, Termez, Surxondaryo reg.

24Th MRHO/UZ/2003/IsvT24h
9537 MRHO/TM/1995/9537 great gerbil Turkmenistan, Serahs, Ahal reg.
BUR MRHO/UZ/1987/BUR human Uzbekistan, Qorovulbozor, Bukhara reg.

Positive

L. major

1M 2 MHOM/UZ/1998/IsvM01h

human Uzbekistan, Muborak, Qashqadaryo reg.

2M MHOM/UZ/1998/IsvM29h
26Ch MHOM/UZ/2002/IsvM26h

27Ch 2 MHOM/UZ/1998/IsvM27h
29Ch MHOM/UZ/2002/IsvM29h
37Ch MHOM/UZ/2002/IsvM37h
79P MRHO/UZ/2002/IsvM79g great gerbil

44Tg MRHO/UZ/2003/IsvT44g Uzbekistan, Termez, Surxondaryo reg.
3T MHOM/UZ/2000/IsvT03h human

1 Rhombomys opimus (Muridae, Rodentia). 2 Tested for the presence of LRV in [34].

2.2. Whole-Genome Sequencing and Read Mapping

Total DNA of 9 virus-positive and 1 virus-negative (13 Th) L. major strains was isolated
as described previously [35]. The whole-genome sequencing libraries were prepared
with TruSeq DNA PCR-free Kit (Illumina, San Diego, CA, US) and sequenced using
HiSeq 4000 platform (Illumina) in paired-end mode with read length of 150 bp at SkolTech
Genomics core facility (Moscow, Russia). The average sequencing depth was approximately
27 million read pairs per sample. The obtained data were deposited to GenBank (BioProject
PRJNA763936).

Read quality control was performed with FastQC v. 0.11.9 [36]. Reads were adapter-
and quality-trimmed with Trimmomatic v. 0.39 [37] and mapped on the reference genome
assembly of Leishmania major strain Friedlin from TriTrypDB v. 50 [38] using BWA-MEM
algorithm in BWA v. 0.7.17 [39].

Isolated double-stranded RNA samples were sequenced at Macrogen (Seoul, Korea)
and the obtained raw reads were used for assembling viral genomes as described pre-
viously [18]. The assembled sequences were deposited to GenBank under the accession
numbers MZ926700-MZ926706.

2.3. Phylogenetic Analyses of Leishmania major Strains

In addition to 10 L. major strains studied here, whole-genome sequencing data for the
following strains: SD75, LV39c5, LT252, BH129 and BH121 were downloaded from the
NCBI SRA database (accession numbers SRR833759, SRR1028158, ERR3610774, SRR14328165,
SRR14328166, respectively). Reads were processed and mapped as described above, but
specific trimming parameters were chosen individually according to the FastQC reports.
The genome assembly and annotation of L. aethiopica isolate L147 was downloaded from
the TriTrypDB. One-to-one orthologs (202 genes in total) between Leishmania major and
L. aethiopica were found using the NCBI BLAST suite v. 2.12.0+ [40].
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The single nucleotide polymorphism (SNP) calling was done with GATK v. 4 [41]. The
vcf-consensus program from the VCFtools v. 0.1.16. package [42] was used to coordinate
SNPs with the reference genome of L. major strain Friedlin and to obtain strain-specific
sequences for further multiple sequence alignments. Individual SNPs, showing no variation
between the strains sequenced here, were filtered out.

Multiple sequence alignment was performed using MAFFT v. 7.475 using L-INS-i
algorithm [43]. Phylogenetic tree was constructed using IQ-Tree v. 1.6.12 [44] with best-
fit model (TIM + F + G4) determined by ModelFinder [45] and testing tree branches by
1000 standard bootstraps replicates.

2.4. Phylogenetic Analyses of LRVs

In addition to the sequences obtained in this work, all available genomes of LRVs
were retrieved from the NCBI (Table S1). Codons were determined and translated using
OrfM v. 0.7.1 [46]. Amino acid sequences were aligned with MAFFT v. 7.453 using E-INS-i
algorithm and trimmed with trimAl v. 1.4 [47] using “-colnumbering” option to keep
track of deleted columns. The amino acids in the trimmed alignment were reverted to the
corresponding codons using a custom script. The resulting nucleotide alignment was split
into three partitions according to the codon position using a custom script in conjunction
with the trimAl “-selectcols” option. The substitution model was selected separately for
each position using the ModelFinder: GTR + F + G4 for the 1st and 2nd positions and
GTR + F + I + G4 for the 3rd position. The maximum likelihood analysis was performed
in IQ-Tree v. 1.6.12 with unlinked branch lengths across partitions and 1000 thorough
bootstraps replicates.

To assess the mode of sequence evolution, the codon-based z-test for selection was
conducted in MEGA X [48,49] using the modified Nei-Gojobori method [50] with tran-
sition/transversion ratio of 2 and 1000 bootstrap replicates to calculate the variance of
the difference. This analysis involved 35 LRV1 and 13 LRV2 nucleotide sequences. All
ambiguous positions were removed for each sequence pair (“pairwise deletion” option)
giving a total of 1586 (LRV1) and 1556 (LRV2) codon positions in the final dataset. The
omega values (dN/dS ratio) for each protein alignment have been estimated using SLR
v. 1.3 [51].

2.5. Structure Prediction and Functional Sites Annotation

The structure of LRV1 capsid protein and functional sites have been already experimen-
tally determined [52]. No such information is available for RDRP of LRVs and, therefore,
its secondary and tertiary structures have been predicted using AlphaFold 2 [53] with a
“full_dbs” preset and visualized in UCSF ChimeraX v. 1.2.5 [54]. Annotation of functional
elements has been performed manually based on the data from [55]. Alignments were
visualized in Jalview v. 2.11 [56].

3. Results
3.1. Screening of Leishmania spp. Isolates for the Presence of dsRNA Viruses

Nineteen isolates of Leishmania spp. from Middle Asia (twelve from Uzbekistan and
seven from Turkmenistan) were unambiguously identified as L. major or L. turanica using
18S rRNA gene sequences and screened for the presence of leishmaniaviruses (Table 1). For
L. major, seven out of eleven strains were virus-positive, while all eight L. turanica isolates
were virus-negative. Combined with the previous report on Leishmania spp. strains from
the same area [34], LRV2 prevalence is 0% (0/12; 95% CI: 0–26.5%) in L. turanica and 64.3%
(9/14; 95% CI: 35.1–87.2%) in L. major with the difference well supported by the chi-square
test (p = 0.0008). Although the viruses appeared to be more frequent in the L. major isolates
from humans (70%, 7/10; 95% CI: 34.7–93.3%) than in those from great gerbils (50%, 2/4;
95% CI: 6.8–93.2%), this could not be confirmed statistically (p = 0.5).
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3.2. Phylogenetic Analyses of Leishmania major Strains and Their Viruses

The phylogenetic analysis based on SNP data for 202 genes from the available L. major
genomes demonstrated that all 10 strains studied here are monophyletic (Figure 1), agreeing
with their common geographic origin from Uzbekistan. The same concerns the strain LV39,
isolated in an unspecified Central Asian region of the former Soviet Union and adjoining
this clade. Meanwhile, the remaining isolates, collected in other parts of the world (Iran,
Senegal, and Brazil), are separated from these by a long branch.
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The topologies of the inferred RDRP and capsid phylogenetic trees were generally
similar (Figures S1 and S2) with small differences in some poorly resolved parts (for
example, viruses from Blechomonas). Therefore, it was possible to concatenate the two
codon-based nucleotide alignments and obtain a more robust phylogenetic tree (Figure 2),
where, in particular, the position of Blechomonas LRVs coincided with that, previously
inferred using amino acid sequences [18]. Similarly to their trypanosomatid hosts, the
viruses from L. major strains analyzed here also formed a monophyletic group. The
phylogenetic distances within this group were very short, as compared to the rest of the
tree. The LRV2 from L. aethiopica also proved to be monophyletic, whereas the LRV1
viruses from L. braziliensis and L. guyanensis were intermingled (Figure 2) demonstrating
an extensive viral exchange between these two species.
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The monophyly of L. major from Uzbekistan and that of their viruses prompted us to
investigate their co-phylogenetic patterns. The topologies within the corresponding clades
were similar, but not fully congruent, suggesting predominant coevolution, occasionally
broken by intraspecific host switches (Figure 3). Such switches should have occurred at
least twice: (i) in the isolate 29Ch and (ii) either in 44Tg or 79P (Figure 3, top and bottom
panels, correspondingly). Due to uncertain position of the isolate 2M on both trees, the
exact number of host switches (2 or 3) in either scenario cannot be established with certainty.
There was no correlation between tree topologies and the geographic origin of the isolates.
This is consistent with the fact that distance between the two sampling locations (Termez
and Muborak) is only ~290 km, which is not long enough to create isolated populations of
L. major, a parasite with highly mobile hosts and vectors.
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3.3. Mode of RDRP and Capsid Genes Evolution

In general, the two viral genes appear to evolve similarly. Considering the clade of
LRV2 from L. major (Figure 2), we observed not only collinear topologies, but also similar
rates of evolution as judged by the sums of branch lengths, which for the capsid is ~0.95 of
that for the RDRP (Figure 4). However, it is evident that the lengths of individual branches
in the capsid subtree are heterogeneous, while the RDRP subtree is almost ultra-metric.
Given that both genes locate on a single genomic segment and evolve at approximately the
same rate, we posited that this discrepancy may be explained by different (and variable)
levels of selective pressure. The z-test of selection revealed statistically significant deviation
from the strict neutrality in favor of negative (purifying) selection, both in the whole LRV
dataset, as well as in the subset of LRV2 from L. major (p < 10−10). In a pairwise mode, the
results of the tests were similar, except for a few cases of closely related sequences, where
the number of substitutions was apparently insufficient for calculations (Table S2).
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In order to understand the differences in the selective pressure on both genes, we
estimated the omega (dN/dS) values, i.e., ratios of nonsynonymous to synonymous sub-
stitutions in both genes for the whole tree and particular clades (Table 2). The results
demonstrate that nonsynonymous substitutions are approximately three–four times less
frequent in the capsid as compared to the RDRP, indicating that the effect of the purifying
selection is considerably stronger in the former. For example, in the LRV2 from L. major
32/151 (21.2%) variable sites of RDRP contained nonsynonymous substitutions, while
this ratio for the capsid was only 9/120 (7.5%). Counterintuitively, the omega values
estimated for both genes in LRV2 from L. major were considerably higher than in other
clades, especially in the sister phylogroup of LRV2 from L. aethiopica, or in the whole tree
(Table 2). One would expect higher estimated dN/dS ratios at larger distances, since more
frequent synonymous substitutions in these conditions can be underestimated due to the
mutational saturation. The opposite results observed here indicate non-homogeneity of
selection across the clades on the tree.

Table 2. Variation of dN/dS ratio in RDRP and capsid genes across the LRV tree.

RDRP Capsid

LRV1 0.0617 0.0219
LRV2 from L. major 0.1283 0.0292

LRV2 from L. aethiopica 0.0455 0.0116
overall 0.0554 0.0192

3.4. Sequence Conservation of LRV Proteins across the Structure

Since the studied genes encode essential proteins, their evolution must be inevitably
driven by functional constraints. Hence, we decided to investigate how the structure of
these proteins correlates with their sequence conservation in order to understand why the
selective pressure on these two genes is different.

3.4.1. Capsid

We used the recently published data on the experimentally determined structure of
LRV1 capsid [52]. It was shown that two differently folded copies of the protein form an
icosahedral asymmetric unit of the viral particle. As in the related Saccharomyces cerevisiae
virus L-A, the bulk of the capsid protein is composed of alpha-helices, while the less
abundant beta-sheets face toward the two-fold and three-fold symmetry axes and provide
interaction surfaces between capsid proteins within a particle [57].

Within both variants of the capsid protein, internal alpha-helices and loops involved
in host mRNA binding and decapping demonstrate high degree of sequence conservation
(Figure 5). At the same time, flexible loops between major secondary structure elements
display more sequence variability. Beta-sheets in the lower left portion of the capsid protein
(red and blue in Figure 5a) form interaction surfaces between units (at two- and three-fold
symmetry axes) and between A and B subunits of a unit. They demonstrate intermediate
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overall conservation, although within a particular LRV species the sequences are highly
similar (Figure S3). The helix-turn-helix motif (green in Figure 5a) is essential for the
formation of five-fold symmetry axes of the virus particle. The mRNA binding and mRNA
decapping motifs (orange and yellow in Figure 5a, respectively) are largely conserved (ex-
cept for Arg68), but devoid of secondary structures. Unexpectedly, the residues outlining
pores, which are necessary for the exit of viral RNA to enable translation, as well as the
entry of nucleotides for replication, demonstrate conservation only within a particular
LRV species, sometimes differing even between the two clades of LRV2 (Figure S3). Thus,
efficient folding and virion assembly, together with host mRNA decapping, represent im-
portant constraints in the evolution of LRV capsid protein. However, the high conservation
of some alpha helices with no functional annotation (Figure 5b and Figure S3) indicates
that the capsid protein may contain additional crucially important components.
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vation. The asymmetric capsid unit, formed by subunits A and B, representing folding variants of the
same protein, is shown. The approximate positions of five-fold, three-fold and two-fold symmetry
axes around the unit are marked by black pentagon, triangle and ellipse, respectively. (a) Position
of functional regions (residue numbering is for LRV1-LgyM4147). (b) Conservation of amino acid
residues in the alignment (Figure S3). Conservation scores are calculated in Jalview.

3.4.2. RDRP

Since the RDRP structure was never determined experimentally for any of the LRVs,
we employed AlphaFold 2 to predict it. According to the inferred model (Figure 6), the
polymerase has a typical enclosed “right-hand” architecture forming a passage for viral
RNA and is structurally similar to that of picorna- and caliciviruses (PDB accession numbers
1wne, 2ijd, 1sh0, 3uqs).
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Figure 6. Predicted three-dimensional structure of RDRP protein in LRV1 demonstrating func-
tional motifs and conservation. (a) Position of functional regions (residue numbering is for LRV1-
LgyM4147). Unannotated parts of the molecule are in grey. (b) Conservation of amino acid residues
in the alignment (Figure S4). Conservation scores are calculated in Jalview. Distant parts of the
molecule are shown with lighter shades of colors.

The inner residues of RDRP forming the catalytic core and RNA channel are highly
conserved (Figure 6). The outer surface of the polymerase shows moderate conservation,
whereas the N-terminal part (residues 1–158) is largely variable. To test whether such
variability is associated with changes in selective pressure, we applied the z-test to the
120 N-terminal codons in the alignment. Our results indicated positive selection for the
most sequence pairs combining LRV2 from L. aethiopica and LRV1 (Table S3). The template
entry is outlined by residues 254–308 and immediately leads to the polymerase catalytic
core formed by six structural motifs A-F [55], which are invariant in all leishmaniaviruses
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(Figure S4). Positively charged residues in the motifs F (Lys399, Lys404 and Arg406)
and D (Arg599), as well as Asp469 in the motif A, are crucial for NTP selection and
binding, whereas negatively charged aspartates in the motifs A (Asp467) and C (Asp558)
are important for the Mg2+ ions coordination and catalysis [58]. The RNA channel within
the polymerase is split into two paths by the alpha helix 801–811, which is largely conserved
in all leishmaniaviruses. We hypothesize that this helix facilitates RNA strand separation
similarly to the bracelet domain of cytoplasmic polyhedrosis virus [59] and rotavirus [60].
Indeed, the surface of this helix is negatively charged creating a steric obstacle for the
incoming RNA duplex and directing the strands into two separate positively charged
channels. In this process, the hydrophobic patch (residues 803–807) is important for
breaking the hydrogen bonds between RNA bases, while positively charged outlines of
the exit channels capture the phosphate groups of the RNA backbone [60]. The strand
separation is important for all dsRNA viruses since transcript sense RNA must exit virion
through pores for translation and new particle assembly [59,61].

4. Discussion

Here we report a high prevalence (over 60%) of LRV2 in Leishmania major, similar to
that previously recorded in Northern Iran (~70%) [29], which is situated approximately
1000 km from the area sampled in this work. No viral infection was detected in L. turanica,
one of the closest relatives of L. major [62,63] coinfecting the same sand fly vector, Phle-
botomus papatasi, or the great gerbils [64,65]. This is particularly surprising, given that
more distantly related L. tropica and L. infantum bear LRVs obtained by horizontal transfer
from L. major [28,29,66]. The viruses inhabiting L. aethiopica, the sister species of L. tropica,
represent a separate LRV2 lineage (Figure 2), which apparently evolved in isolation, since
the geographic range of its flagellate host (Ethiopia and Kenya highlands) does not overlap
with those of abovementioned Leishmania spp. [67].

Even with a relatively small number of strains we were able to reveal intraspecific hor-
izontal transfers of LRV2 between L. major strains, superimposed on their co-phylogenetic
pattern. The observed results are consistent with the paradigm that, similarly to many other
parasitic protists, Leishmania spp. reproduce mostly clonally [68], but occasionally different
strains or species meet and exchange their genetic material and/or viruses [17,69–71]. The
transfer of LRVs does not even require a direct cell contact—the transmission is efficiently
completed via exosomes shed and subsequently uptaken through the flagellar pocket [30].
If the viral prevalence is high, this may lead to a superinfection of a single Leishmania isolate
with several LRV strains [72], but in this study we did not detect such cases.

The clade of LRV2 from L. major evolves differently from other LRVs, as judged by
a higher ratio of nonsynonymous to synonymous substitutions. We hypothesize that
the promiscuity of this lineage (ability to infect other Leishmania spp.) results in the
lowered selective pressure for this virus, since life in different flagellate host species
may weaken the stabilizing selection. This effect is not observed in LRV1, which also
switches between different species (L. guyanensis and L. braziliensis), but its hosts are more
closely related. In addition, the whole history of LRV1 was tightly associated with these
Leishmania spp. resulting in the adaptation to the regular host switches. Of note, the hosts of
LRV1 (subgenus Viannia) possess the RNAi pathway, which has been lost in the subgenus
Leishmania hosting LRV2 [73,74]. It may influence the selective pressure on LRVs, although
we did not observe a strict correlation between RNAi presence and omega values for the
capsid and RDRP in different lineages.

The comparison of the two viral genes revealed that their evolutionary constraints
differ, with RDRP being more permissive to nonsynonymous substitutions. This can be
explained by drastically different structural-functional properties of these two proteins.
While RDRP, as an enzyme, requires the conservation mostly in its central part associated
with substrate uptake and catalytic activity, the capsid, as a multipurpose protein, contains
more functional fragments and, therefore, a higher proportion of the sequence is conserved
at the amino acid level.
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Although in general the evolution of the two proteins appears to be under a strong
purifying selection, it is remarkable that some variable regions, such as the N-terminus
of RDRP and pore-associated residues, experience a selective pressure in the opposite
direction, suggesting their important roles in adaptation to different hosts.

Our results allowed correlating the modes of evolution in LRVs with their biological
peculiarities. We envision that further research will be focused on scrutinizing the specificity
and adaptation of viruses to various hosts, and the functional analysis of uncharacterized
parts of the viral proteins.
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10.3390/v13112305/s1, Figure S1: Maximum likelihood phylogenetic tree inferred using capsid
sequences; Figure S2: Maximum likelihood phylogenetic tree inferred using RDRP sequences; Figure
S3: Multiple sequence alignment of LRV capsid proteins; Figure S4: Multiple sequence alignment of
LRV RDRP proteins; Table S1: Sequences of LRVs retrieved from Genbank; Table S2: p-values for
the z-test in sequence pairs (null hypothesis—strict neutrality, alternative hypothesis—purifying
selection) of capsid and RDRP proteins, Table S3: p values for the z-test in sequence pairs for the
N-terminus of RDRP (both purifying and positive selection tested).
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35. Sádlová, J.; Podešvová, L.; Bečvář, T.; Bianchi, C.; Gerasimov, E.S.; Saura, A.; Glanzová, K.; Leštinová, T.; Matveeva, N.S.;
Chmelová, L.; et al. Catalase impairs Leishmania mexicana development and virulence. Virulence 2021, 12, 852–867. [CrossRef]
[PubMed]

36. Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. 8 January 2019. Available online: http:
//www.bioinformatics.babraham.ac.uk/projects/fastqc (accessed on 12 October 2021).

37. Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120.
[CrossRef]

38. Aslett, M.; Aurrecoechea, C.; Berriman, M.; Brestelli, J.; Brunk, B.P.; Carrington, M.; Depledge, D.P.; Fischer, S.; Gajria, B.; Gao, X.;
et al. TriTrypDB: A functional genomic resource for the Trypanosomatidae. Nucleic Acids Res. 2010, 38, D457–D462. [CrossRef]
[PubMed]

39. Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760.
[CrossRef] [PubMed]

40. Sayers, E.W.; Beck, J.; Bolton, E.E.; Bourexis, D.; Brister, J.R.; Canese, K.; Comeau, D.C.; Funk, K.; Kim, S.; Klimke, W.; et al.
Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2021, 49, D10–D17. [CrossRef]
[PubMed]

41. Van der Auwera, G.A.; O’Connor, B.D. Genomics in the Cloud: Using Docker, GATK, and WDL in Terra; O’Reilly Media, Inc.:
Sebastopol, CA, USA, 2020; p. 496.

42. Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.;
et al. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [CrossRef]

43. Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability.
Mol. Biol. Evol. 2013, 30, 772–780. [CrossRef] [PubMed]

44. Nguyen, L.T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating
maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [CrossRef]

45. Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate
phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [CrossRef] [PubMed]

46. Woodcroft, B.J.; Boyd, J.A.; Tyson, G.W. OrfM: A fast open reading frame predictor for metagenomic data. Bioinformatics 2016, 32,
2702–2703. [CrossRef]

47. Capella-Gutiérrez, S.; Silla-Martinez, J.M.; Gabaldon, T. trimAl: A tool for automated alignment trimming in large-scale
phylogenetic analyses. Bioinformatics 2009, 25, 1972–1973. [CrossRef] [PubMed]

48. Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across computing
platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [CrossRef] [PubMed]

49. Stecher, G.; Tamura, K.; Kumar, S. Molecular Evolutionary Genetics Analysis (MEGA) for macOS. Mol. Biol. Evol. 2020, 37,
1237–1239. [CrossRef]

50. Wei, X.; Zhang, J. A simple method for estimating the strength of natural selection on overlapping genes. Genome Biol. Evol. 2014,
7, 381–390. [CrossRef]

51. Massingham, T.; Goldman, N. Detecting amino acid sites under positive selection and purifying selection. Genetics 2005, 169,
1753–1762. [CrossRef] [PubMed]

52. Procházková, M.; Füzik, T.; Grybchuk, D.; Falginella, F.L.; Podešvová, L.; Yurchenko, V.; Vácha, R.; Plevka, P. Capsid structure of
Leishmania RNA Virus 1. J. Virol. 2021, 95, e01957-20. [CrossRef] [PubMed]

53. Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Zidek, A.; Potapenko,
A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [CrossRef]

54. Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Meng, E.C.; Couch, G.S.; Croll, T.I.; Morris, J.H.; Ferrin, T.E. UCSF ChimeraX:
Structure visualization for researchers, educators, and developers. Protein Sci. 2021, 30, 70–82. [CrossRef]

55. Bruenn, J.A. A structural and primary sequence comparison of the viral RNA-dependent RNA polymerases. Nucleic Acids Res.
2003, 31, 1821–1829. [CrossRef]

http://doi.org/10.1016/j.ijid.2020.08.033
http://www.ncbi.nlm.nih.gov/pubmed/32947050
http://doi.org/10.1038/s41564-018-0352-y
http://doi.org/10.1371/journal.pntd.0005782
http://doi.org/10.1016/0166-6851(95)02526-X
http://doi.org/10.1007/s00436-014-4277-y
http://www.ncbi.nlm.nih.gov/pubmed/25544706
http://doi.org/10.3390/genes10100830
http://doi.org/10.1080/21505594.2021.1896830
http://www.ncbi.nlm.nih.gov/pubmed/33724149
http://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://doi.org/10.1093/bioinformatics/btu170
http://doi.org/10.1093/nar/gkp851
http://www.ncbi.nlm.nih.gov/pubmed/19843604
http://doi.org/10.1093/bioinformatics/btp324
http://www.ncbi.nlm.nih.gov/pubmed/19451168
http://doi.org/10.1093/nar/gkaa892
http://www.ncbi.nlm.nih.gov/pubmed/33095870
http://doi.org/10.1093/bioinformatics/btr330
http://doi.org/10.1093/molbev/mst010
http://www.ncbi.nlm.nih.gov/pubmed/23329690
http://doi.org/10.1093/molbev/msu300
http://doi.org/10.1038/nmeth.4285
http://www.ncbi.nlm.nih.gov/pubmed/28481363
http://doi.org/10.1093/bioinformatics/btw241
http://doi.org/10.1093/bioinformatics/btp348
http://www.ncbi.nlm.nih.gov/pubmed/19505945
http://doi.org/10.1093/molbev/msy096
http://www.ncbi.nlm.nih.gov/pubmed/29722887
http://doi.org/10.1093/molbev/msz312
http://doi.org/10.1093/gbe/evu294
http://doi.org/10.1534/genetics.104.032144
http://www.ncbi.nlm.nih.gov/pubmed/15654091
http://doi.org/10.1128/JVI.01957-20
http://www.ncbi.nlm.nih.gov/pubmed/33208443
http://doi.org/10.1038/s41586-021-03819-2
http://doi.org/10.1002/pro.3943
http://doi.org/10.1093/nar/gkg277


Viruses 2021, 13, 2305 15 of 15

56. Procter, J.B.; Carstairs, G.M.; Soares, B.; Mourao, K.; Ofoegbu, T.C.; Barton, D.; Lui, L.; Menard, A.; Sherstnev, N.; Roldan-Martinez,
D.; et al. Alignment of biological sequences with Jalview. Methods Mol. Biol. 2021, 2231, 203–224. [PubMed]

57. Naitow, H.; Tang, J.; Canady, M.; Wickner, R.B.; Johnson, J.E. L-A virus at 3.4 A resolution reveals particle architecture and mRNA
decapping mechanism. Nat. Struct. Biol. 2002, 9, 725–728. [CrossRef] [PubMed]

58. Venkataraman, S.; Prasad, B.; Selvarajan, R. RNA Dependent RNA Polymerases: Insights from structure, function and evolution.
Viruses 2018, 10, 76. [CrossRef] [PubMed]

59. Cui, Y.; Zhang, Y.; Zhou, K.; Sun, J.; Zhou, Z.H. Conservative transcription in three steps visualized in a double-stranded RNA
virus. Nat. Struct. Mol. Biol. 2019, 26, 1023–1034. [CrossRef] [PubMed]

60. Ding, K.; Celma, C.C.; Zhang, X.; Chang, T.; Shen, W.; Atanasov, I.; Roy, P.; Zhou, Z.H. In situ structures of rotavirus polymerase
in action and mechanism of mRNA transcription and release. Nat. Commun. 2019, 10, 2216. [CrossRef]

61. Lawton, J.A.; Estes, M.K.; Prasad, B.V. Mechanism of genome transcription in segmented dsRNA viruses. Adv. Virus Res. 2000, 55,
185–229. [PubMed]
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